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ABSTRACT 

It has recently been demonstrated that  there are strongly irreducible 

subshifts of finite type with more than one measure of maximal entropy. 

Here we obtain a number of results concerning the uniqueness of the 

measure of maximal entropy. In addition, we construct for any d > 2 

and k a strongly irreducible subshift of finite type in d dimensions with 

exactly k ergodic (extremal) measures of maximal entropy. For d > 3, 

we construct a strongly irreducible subshift of finite type in d dimensions 

with a continuum of ergodic measures of maximal entropy. 
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1. I n t r o d u c t i o n  

We consider symbolic dynamical systems whose underlying group structure is ~d 

and whose symbol set is F ,  a finite set of at least two elements. Z d is given the L 1 

(nearest neighbor) norm I I so that  I ( x l , x 2 , . . . , x d ) I  = Ixll + Ix21 + . . .  + Ix~I. 

(We will later consider the L °° norm ] I oo given by Ix[o~ = maxi Ix~I, but if no 

subscript is attached, it is understood to be the L 1 norm.) If A is a subset of Z d 

then the b o u n d a r y  of A is OA = (x  E A: 3y E A c with Ix - Yl --- 1}. 

A c o n f i g u r a t i o n  is a map 7: A C_ Z d ~ F. x E A are called locations and 

7(x) is the va lue  of the configuration at location x. Usually A will be a finite 

set or Z d itself. A configuration 7: A ~ F is a r e s t r i c t i o n  of a configuration 

¢: B ~ F if A C_ B and ~ agrees with 7 on A. We also say in this case that  

is an e x t e n s i o n  of 7. Note that  Z d acts on configurations by translations. If 

y E Z d set for x E Z d, T y ( x )  ~-- x - y and for A C Z d, set TyA = {x - y: x E A}. 

If 7: A , F,  we also let TyT(x) = 7(Ty(x)) for x E T_yd.  

Definition 1.1: Let 7i: Ai , F; 1 < i < K be a finite set S of configurations 

with Ai finite for each 1 < i < K. The s u b s h i f t  o f  f in i te  t y p e  (in d dimensions) 

corresponding to S is the set X C F zd consisting of all configurations 7: Z d ~ F 

such that  for all y E Z d it is not the case that  Ty7 is an extension of some 7i. 

(The 7~'s should be thought of as the disallowed finite configurations.) 

Definition 1.2: An X C F zd is a s y m m e t r i c  n e a r e s t  n e i g h b o r  s y s t e m  if 

there is a subset G C_ F × F that  is symmetric (i.e. (e, f )  E G ==~ (f ,  e) E G) and 

such that  X = {7: zd ~ F : x ,  y E  Z d , l x - y l  -= l i m p l i e s ( 7 ( x ) , 7 ( y ) )  ~ G}. 

A n e a r e s t  n e i g h b o r  s y s t e m  is a subshift of finite type where all of the Ai's 

consist of 2 points x and y with I x - y] = 1. 

Note that  a symmetric nearest neighbor system is of course a nearest neighbor 

system. If X is a subshift of finite type then X is closed in the usual product 

topology and is shift invariant, i.e., 7 E X and y E Z d implies Ty(7) E X.  

The next definition gives a measure of the size of a subshift of finite type X 

or its degree of complexity. If 7): A , F is a configuration, we say that  ~) is 

c o m p a t i b l e  with X if 3 7 E X such that  9 is a restriction of 7. Let An = I -n ,  n] d 

and Xn = {7): An ~ F with ~ compatible}. We also let Nn = IX~] (IAI is the 

cardinality of A) and X(~) = {7 E X: 7 is an extension of 9}- 
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Definition 1.3: The topo log ica l  e n t r o p y  of X is 

log Nn 
H ( ~ )  ~- lin'loo ]An] . 

Suppose that # is a translation invariant probability measure on X. Then the 

m e a s u r e  t h e o r e t i c  e n t r o p y  of p is 

1 
H(p)  = limo¢ -[An--] Z p(X(( I ) ) logp(Z(~)) .  

,~EXn 

Both of these limits exist by subadditivity. Clearly for any such measure # we 

have H(#)  _< H ( X ) .  In fact we have the following variational principle. See [10] 

for an elementary proof. 

THEOREM 1.4: Let X be a subshift of finite type. Let A/Ix be the set of transla- 

tion invariant measures on X .  Then H ( X )  = sup~eM x H(#) and moreover the 

supremum is achieved at some measure. 

In this paper, we will only consider so called strongly irreducible subshifts of 

finite type. 

Definition 1.5: Let X be a subshift of finite type. X is s t r o n g l y  i r r e d u c i b l e  if 

there is an r > 0 such that whenever we have finite configurations ~71:A1 ~ F 

and ~2:A2 ~ F compatible with X and the distance between A1 and A2 is 

greater than r, there is then an ~ C X that is an extension of both ~]1 and ~/2. 

This paper is concerned with the question of whether this supremum is achieved 

at more than one place, that is, whether there is more than one measure of maxi- 

mal entropy. It has recently been shown in [3] that there are strongly irreducible 

subshifts of finite type with more than 1 measure of maximal entropy. One of 

the main points of this paper is to present a number of theorems concerning the 

uniqueness of the measure of maximal entropy. Before doing this however, we 

first prove the following two theorems concerning nonuniqueness. 

THEOREM 1.6: For any k >_ 1 and d >_ 2, there exists a strongly irreducible 

subshift of finite type in d dimensions which has exactly k ergodic measures of 

maximal entropy. 

It is natural to ask if there exists a strongly irreducible subshift of finite type 

which has infinitely many ergodic measures of maximal entropy. The following 

result provides an answer for d >_ 3. We do not know if this is possible for d = 2. 
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THEOREM 1.7: For any d > 3, there exists a strongly irreducible subshift of finite 

type in d dimensions which has a continuum of ergodic measures of  maximal 

entropy. 

In [3], the main subshift of finite type which was analyzed was the following. 

Example 1.8: Let M be a positive integer and F = { - M ,  - M +  1 , . . . ,  - 2 ,  - 1 ,  1, 

2 , . . . , M -  1,M}.  Consider the symmetric nearest neighbor system given by 

G = {( i , j )  E F x F: ij < -2} .  In words, a negative may not sit next to a 

positive unless they are each +1. 

We list here the three main results which were proven for Example 1.8 in [3]. 

To do this, we first need a definition. 

Definition 1.9: Given 7/E X,  we say G C_ Z d is a p o s i t i v e  c l u s t e r  with respect 

to ~/) if G is connected (using the usual nearest neighbor notion), ~(x) > 1 for 

all x E G and G is maximal with respect to these two properties. A n e g a t i v e  

c l u s t e r  is defined analogously. A c l u s t e r  is either a positive or negative cluster. 

Consider the subshift of finite type given by Example 1.8 and THEOREM 1.10: 

let d > 2. I[ 

M > 4e28 d, 

then given any ergodic measure o[ maximal entropy in d-dimensions, either there 

is almost surely exactly one infinite positive duster whose complement contains 

no infinite connected subset or there is almost surely exactly one infinite negative 

cluster whose complement contains no infinite connected subset. 

Because of the :k symmetry,  Theorem 1.10 immediately yields 

Consider the subshift of finite type given by Example 1.8 and COROLLARY 1.11: 

let d >_ 2. If  

M > 4e28 a, 

then there is more than 1 measure of maximal entropy in d-dimensions. 

THEOREM 1.12: Consider the subshift of finite type given by Example 1.8 and 

let d > 2. If  

M > 4e28 d, 

then there axe exactly 2 ergodie measures of maximal entropy in d dimensions. 
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Note that  Theorem 1.12 proves Theorem 1.6 for the case k = 2. Our first unique- 

ness result concerns a simple modification of Example 1.8 where the important  

-4- symmetry  no longer exists. 

Example 1.13: Let M be a positive integer, 1 _< k <_ M -  1 and F = 

{ - M  ÷ k , . . . , - 2 , - 1 , 1 , 2 , . . . , M  - 1,M}.  Consider the symmetric nearest 

neighbor system given by G = {( i , j )  C F x F: i j  <_ -2} .  

THEOREM 1.14: Consider the subshift of finite type given in Example 1.13. I f  

M > 4e(28) d and 1 < k < M - 1, then there exists a unique measure of maximal 

entropy in d-dimensions. 

The above theorem demonstrates the importance of the symmetry  present in 

Example 1.8 in terms of having more than one measure of maximal entropy. Our 

second uniqueness result in the nonsymmetric case is the following. 

THEOREM 1.15: Consider the subshift of finite type given in Example 1.13. I f  

M - k  1 - - <  
M ( 2 d -  1)22d+1' 

then there exists a unique measure of  max ima/en t ropy  in d-dimensions. 

The above two results are special cases of the following conjecture which we 

believe is true. 

CONJECTURE 1.16: The subshift of finite type given in Example 1.13 always has 

a unique measure of maximal entropy. 

Our next result tells us that  if we take any nearest neighbor system (not nec- 

essarily strongly irreducible) and add enough new states all of which can be 

adjacent to any other state including each other, we obtain a strongly irreducible 

subshift of finite type with a unique measure of maximal entropy. To state this 

result, we need to introduce percolation. 

Suppose each vertex i E Z d is, independent of all other vertices, o p e n  with 

probability pl and c losed  with probability 1 - p i .  Denote the correspond- 

ing probability measure by P{p~}. For a realization of the process a pa th  is 

called open if all its vertices are open. We say that  p e r c o l a t i o n  occurs if 

P{p,} (there exists an infinite open path) > 0 (in which case this probability is 

1 since the event is a tail event). If  all the pi 's are equal, say p, we write Pp 

for the above probability measure and define the c r i t i ca l  p r o b a b i l i t y  pc(d) = 
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inf{p: Pp(there exists an infinite open path) > 0}. One of the first results in per- 

colation was to show that pc(2) < 1 ([2]). (It is easy to show that for all d, 

pc(d) > 0 which will tell us that Theorem 1.17 is nonvacuous.) The above model 

is called i n d e p e n d e n t  s i te  pe rco l a t i on .  For further study, see [6] and [9]. 

THEOREM 1.17: Given a nearest neighbor system X in d dimensions, let X n 

denote the subshift of finite type obtained by adding n new states all of  which 

can be adjacent to any other state including each other. I f  the number of states 

for X is k and 
2k . k )2 

n+k  <pc(d), 
then X n has a unique measure o[ maximal entropy. 

Theorem 1.17 together with the methods of [3] allows us to prove a phase 

transition in a particular symmetric nearest neighbor system which we call the 

"iceberg" model. The state space has positives, negatives and zeroes. More 

precisely, the states are 

{ - M , . . . ,  -1 ,  (0, 1), (0,2), (0, 3), (0, 4), (0, 5), 1 , . . . ,  M) .  

We think of this as having five zeroes. The rules are that the positives may not 

sit next to the negatives but all else is allowed (and so in particular the five O's 

can sit next to anyone). 

THEOREM 1.18: Consider the "iceberg" model for d=2. Then for M = 1, there 

is a unique measure of maxima/ent ropy while for large M, there is more than 

one measure of maxima/entropy. 

We call this a phase transition since depending on the parameter M, it is possible 

to have either one or more measures of maximal entropy. The advantage of this 

model over Example 1.8 is that we haven't been able to show that there is a 

unique measure of maximal entropy for small M (although we certainly believe 

this) demonstrating the desired phase transition. 

We find it convenient to mention one other result from [3] which we will need 

here. We state a stronger version than stated there but which can be proved in 

the same manner. We point out that it is exactly this theorem that allows one 

to begin an analysis of measures of maximal entropy. We first give a definition. 

Letting r be a positive integer and G C Z d be finite, we define B r = Br(G)  to 

be 

{x • G: 3y E G with I x -  Yl < r}. 
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Definition 1.19: A measure # on S zd is r - M a r k o v  if for any finite G C_ Z d, 

the conditional distribution of p on G given the values on G c is the same as the 

conditional distribution of # on G given the values on B~(G). 

PROPOSITION 1.20: Let # be a measure of maximal entropy for a subshift of 

finite type where for each Ai (defining the subshift of finite type), we have that 

sup~,yeA~ [x -- y[ <_ r. Then p is r-Markov and furthermore the conditional 

distribution of p on any finite set G given the configuration on B~(G) is #-a.s. 

uniform over all configurations on G which (together with the configuration on 

B~(G)) extend the configuration on B~(G). 

We mention that Proposition 1.20 is proved in [3] in the case where the subshift 

of finite type is a symmetric nearest neighbor system (Proposition 1.19 in that 

paper) while the more general result can be proved in the same way. Note that for 

nearest neighbor systems, the measures of maximal entropy are then 1-Markov 

which becomes the usual definition of Markov. In this paper, we will only apply 

Proposition 1.20 in the nearest neighbor case. 

There is a converse to Proposition 1.20 which is much easier to prove but which 

only necessarily holds in the strongly irreducible case. The proof given in [3] for 

the symmetric nearest neighbor case can easily be carried out in this more general 

setting. 

PROPOSITION 1.21: Let # be a measure defined on a strongly irreducible subshift 

of finite type X where for each A~, we have that supx,yEA ~ [ x -- y[ <_ r. Assume 

that # is r-Markov and furthermore that the conditional distribution of # on 

any finite set G given the configuration on B~(G) is #-a.s. uniform over all 

configurations on G which (together with the configuration on B~(G)) extend 

the configuration on B~(G). Then # has maximal entropy. 

The rest of this paper is devoted to the proofs of the above results. 

2. A subshift with  exactly  k ergodic measures of maximal  entropy in 

d > 2 dimensions 

In this section, we construct a subshift of finite type with exactly k ergodic 

measures of maximal entropy in d-dimensions, thereby proving Theorem 1.6. 

This system will be a natural generalization of Example 1.8. We first introduce 

the following notions which will be used throughout this paper. 



282 R. BURTON AND J. E. STEIF Isr. J. Math. 

Det~nition 2.1: G C Z d is c o n n e c t e d  if for each pair x, y E G, there is a path 

x = xo, x l , . . . , x , ~  = y with xi E G, for 0 < i < n and Ixi - x i - l I  = 1, for 

l < i < n .  

G C_ Z d is * - c o n n e c t e d  if for each pair x, y E G, there is a path as above with 

I x l - x i - l l ~ = l  f o r l < i < n .  

G C Z d is * * - c o n n e c t e d  if for each pair x, y E G, there is a path as above with 

Ixi - xi-lIo~ _< 3 for 1 < i < n. 

Paths of the second and third type will be called respectively . -pa ths  and **- 

paths while paths of the first type will simply be called paths. We will assume 

all paths in this paper are nonintersecting. 

The system we construct is given as follows. We let F = {(i , j ) :  1 _< i 

k, 1 _< j _< M} where k and M are two positive integer parameters. Consider the 

symmetric nearest neighbor system X given by G = {((i, j ) ,  (i', j ' )  E F × F: i ~ i' 

and at least one of j and j~ is not 1}. This is defined for any dimension d. 

Pictorially, we have k values {(i, 1): 1 < i < k} all of which can sit next to each 

other. Each of these values has in turn M - 1 values which only it can sit next to. 

Namely, (i, 1) can sit next to {(i , j) :  2 < j < M}. Moreover, these M - 1 values 

can all sit next to each other. It is clear that this subshift is strongly irreducible 

and moreover that  when k = 2, we recover Example 1.8. Throughout this section, 

we will consider only this subshift which has of course the parameters M, k and 

d where d is the dimension of the lattice. We will show that if M is sufficiently 

large relative to k and d (the precise requirement being given later), then there 

are exactly k ergodic measures of maximal entropy. We mention that  the proof 

that there are at least k ergodic measures of maximal entropy follows more or 

less the proof for k = 2 given in [3]. The fact that there are exactly k however 

requires a different method. 

For ~ = 1 , . . . , k ,  we let 

C ~ = { ( ~ , j ) : I < _ j < _ M }  and C~ = C~\{(e, 1)}. 

Definition 2.2: Given ~? E X, we say G C_ Z d is an g - c l u s t e r  (with respect 

to ~) if G is connected (using the usual nearest neighbor notion), r/(x) E Cl for 

all x E G and G is maximal with respect to these properties. 

THEOREM 2.3: Consider the subshift of finite type given above and let d >_ 2. I f  

M >  2ek(Tk2) d, 
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then given any ergodic measure of maximal entropy, there is an g E {1 , . . . ,  k} 

such that there is almost surely exactly one infinite g-cluster whose complement 

contains no infinite connected subset. 

Note that Theorem 2.3 immediately gives because of symmetry the following 

corollary. 

COROLLARY 2.4: Consider the subshift of finite type given above and let d >_ 2. 

I f  

M > 2ek(7k2) d, 

then there are a t / eas t  k ergodic measures of maximal entropy. 

The proof of Theorem 2.3 rests on the following lemma. Once this lemma 

is proved, we will prove Theorem 2.3 by using the same method used to prove 

Theorem 1.15 in [3] (which is Theorem 1.10 in the present paper). We first 

introduce the following notation which will be used throughout this paper. 

Definition 2.5: Let S C_ Z d be finite. Let ~ be a compatible configuration defined 

on OS. Define ~n to be the set of compatible configurations on S which extend 

y. Define #n to be uniform measure on ~ .  

LEMMA 2.6: Let B = {(i, i): 1 < i < k}. With M, k and d fixed, let # be a 

measure of maxima/ent ropy on X .  Let G C_ Z d and E be the event 

{~(z) E B for all x E G}. 

Proof" Call a path in Z d spec ia l  (with respect to 71) if no two successive points 

on the path are in B. Let 

A(x)  = {y: there exists a special path from x --* y}. 

The existence of a special path between x and y is an equivalence relation whose 

equivalence classes we call a t oms .  A(x)  above is therefore simply the atom 

containing x. 

Before continuing with the proof, we give another construction of an atom 

which will hopefully allow the reader to better understand this proof. We say that  

A c Z d is f l ippable  (for ~?) if for any g = 1 , . . . ,  k, if we change the configuration 
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~? on A by setting all the first coordinates of the values to be e, then we still have 

an element of X. The reader should check that if this is true for at least two 

values of g, then A is flippable and that  an atom is exactly a minimal flippable 

set. The importance of flippable sets and atoms is that when any subset of the 

flippable sets are flipped, the collection of flippable sets for the new configuration 

and hence the collection of atoms is unchanged. This is what makes the proof 

work. 

Now, 

let ~(x) 

consider the mapping T: X ~ X as follows. Consider ~? E X and 

= ( i , j ) .  If [A(x)] < oc, let T(~?)(x) = ~(x).  If IA(x)] = oc, let 

= ( k , j ) .  Let ~ be the measure on X obtained from # and T. The 

proof of Proposition 4.5 in [3] can easily be modified to give us that  # is also a 

measure of maximal entropy. (Essentially, the reason that the transformed mea- 

sure has maximal entropy is that when we flip all the infinite atoms to be of one 

type, we are only giving up entropy 0 information since the number of infinite 

atoms in a box of size n d is at most cnd-1.) Moreover, clearly #(E)  = ~(E).  

Let a = /5 (E) .  We want to show a <_ -(k2M-~-+l) Icl. If a = 0, there is nothing to 

prove and so we assume a > 0 and let e < a. By definition of ~, we can take A,~ 

containing G U OG c with n so large that  with probability greater than 1 - e, any 

atom with values in Ce, e ¢ k (which is necessarily finite) intersecting either G or 

OG ~ is contained in A,~-I. Letting F be this event, we have that ~(F)  > 1 - e  and 

so ~(E  M F)  > a - e. There is then a configuration ~? with location set 0An such 

that  ]5(~?) > 0 and/5([~ on 0An) gives E M F  probability > a - e .  Proposition 1.20 

tells us that this conditional measure restricted to A,~ is uniform distribution #n 

on ~n (see Definition 2.5). Note that the events E and F are measurable with 

respect to the configuration on An and so we can think of them as subsets of ~n. 

Next, for each configuration ~ E ~2 n M E N F, let ~ be the configuration obtained 

from ~ as follows. If x E GUOG ~ and ~(x) • Ck, then for all y E A ( x )  (necessarily 

contained in An-l) ,  let ~(y) = ( k , j )  if ~(y) = ( i , j ) .  ~ is unchanged on all other 

points. Note that i f x  E G U O G  c with~(x)  e Ck, t h e n ~  = ~ o n  A(x) .  In 

words, we are taking the atoms which intersect G U OG c and making all the first 

components have value k. Note also that ~ E ~n N E N F and ~(x) = (k, 1) for 

each x E G. Since 

[GuOGC[ <_ (24+  1)[GI, 

the set {~' e ~ ,  N E N F[~ ~ = ~} has cardinality at most k (2d+l)lel. This is 

because ~ and ~ have the same atoms and hence from ~, one can recover ~ up to 
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which set Ce the atoms touching G U OG ~ belong to. 

Given ~ E ~ ,  n E N F, define the class C(~) to be 

{PIP is a configuration on An 

with p(x) = ~(x) for x ¢ G and p(x) e Ck for x E G}. 

Clearly C(~) c_ ftv N F, IC(~)[ = M Ial and C(~) n C(~') = 0 for ~ ~ ~' since if 

~ ~-~, they must differ at some point not in G as they are =- (k, 1) on G. 

We therefore obtain 

a - e < ~ t , ( E n F ) -  l a ' n E n F  I 

< I{~l~' E ~, n E n  F}I k(2d+l)ial (k~_~+~) 'al 
- I{,Zl~ • a ,  n E n F I I M l a i  = 

As e is arbitrary, we obtain the desired inequality. I 

Before proceeding with the proof of Theorem 2.3, we need the following. 

Lemma 2.8 below is proved in [3]. 

Definition 2. 7: G C_ Z d is an enclos ing  set if 

(i) 0 E G ,  

(ii) G is finite, 

(iii) G and G c are each connected. 

If H C Z ~ is any finite set that  contains 0 and is connected, then H c has a 

unique infinite component and (possibly) some finite number of finite compo- 

nents. Note that H U {x[ x E finite component of H ~} is enclosing. 

LEMMA 2.8: The number of enclosing sets G w i t h £ :  IOGI i s<  ( ~ )  (e7d) t. 

Proo[o[ Theorem 2.3: For this proof, we will simply follow the proof of Theorem 

1.15 in [3] (which is Theorem 1.10 in the present paper). 

Let # be an ergodic measure of maximal entropy. With B defined as in Lemma 

2.6, if G is an enclosing set, let 

EG = {'1~(~) e B V x e 0V} .  

Note that Lemma 2.6 immediately gives us that  t t(Ec) _ . We also 

let F = UG: G is enclosing EG. 
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It  is easy to see that  F c implies the existence of an infinite g-cluster containing 

the origin for some g. The first step is to show that  # (F)  < 1. We have using 

Lemma 2.8 

G: G is enclosing e--1 2d - 2 (e7d)e " 

Finally a simple computat ion gives 

Z g + 2 e - 4  1. 
t~=l 

Hence if M > 2(eTdk 2d+1) = 2ek(Tk2) d, the above sum is < 1, as desired. 

For any g, having an infinite e-cluster has probability 0 or 1 by ergodicity. 

Therefore, since tt(F) < 1, we know that  for some g, there is an infinite e-cluster 

a . s . .  

To prove the rest of Theorem 2.3, we need to show that  if C is an infinite 

e-cluster for some g, then Z d N C c has all finite components a.s. First, it can be 

shown that  if C is an infinite e-cluster for some g and Z d N C c has some infinite 

component, then there must be an infinite **-path  with every value on this path  

being in B. (This geometric argument is given in [3] and a more complicated 

version will be given in Theorem 2.11 below.) The argument is finally completed 

by showing that  the probability that  there is an infinite **-path  with every value 

on th i s 'pa th  being in B is 0. This is easily done by using Lemma 2.6 together 

with a trivial upper bound on the number of **-paths of length n start ing from 

the origin. | 

We now know that  there are at least k ergodic measures of maximal entropy. 

We want to finally prove that  there are exactly k ergodic measures of maximal  

entropy. Theorem 1.12 in the present paper  which was proven in [3] shows that  

this is the case when k = 2. Unfortunately, k = 2 is a special case since there is 

then a natural  partial order that  one can put on F which is compatible in some 

sense with the subshift of finite type. When k _> 3, there is no such partial  order 

and so a different method is required. We first need the following proposition 

which is an easy generalization of the main result in [1]. This result is valid for 

general specifications which we do not define here. 

LEMMA 2.9 [1]: Let X be a nearest neighbor symmetric subshift of finite type 

with values F (not necessarily strongly irreducible). Assume that there exists 
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P C F such that for any two elements x, y in P, (x, y) ~ G where G defines the 

nearest neighbor symmetric subshift (this means that x and y are allowed to sit 

next to each other) and such that given x, y E P and z q~ P, (x, z) C G if and 

only i f (y ,  z) E G. (In words, all the elements of P behave in the same way.) Let 

# and v be two measures of maxima/ent ropy for X and let E C X x X be the 

set of pairs of configurations (~, 6) such there exists an infinite path ~r in Z d such 

that for all x C ~r, at least one of ~l(x) and 6(x) is not in P. I f  

# × v ( E )  = 0, 

then # = u. 

To be able to apply Lemma 2.9, we need a stronger version of Theorem 2.3. 

Definition 2.10: Given (~/,6) C X x X, we say G C Z d is an ( Q , g 2 ) - d o u b l e -  

c lu s t e r  (with respect to (~/, 6)) if G is connected (using the usual nearest neighbor 

notion), (~(x), 6(x)) e C' × C' for all x e G and G is maximal with respect to gl g~ 

these properties. 

THEOREM 2.11: Let d >_ 2 and M > 82(2d+l)e2(2d-1)72d(2d-1)4k 2d+1. Let # 

and v be two ergodic measures of maximal entropy. Assume that there exists 

an infinite t-cluster whose complement contains no infinite component a.s. with 

respect to both # and u. (Theorem 2.3 tells us both p and v have such an 

infinite cluster for some ~, but the point is that we assume that # and v have 

the same type cluster.) Then there is # × v-a/most surely exactly one infinite 

( e, e)-double-cluster whose complement contains no infinite connected subset. 

Before giving the proof of Theorem 2.11, we show how this completes the proof 

that there are exactly k ergodic measures of maximal entropy. 

THEOREM 2.12: Consider the subshift of finite type given above and let d >_ 2. 

I f  

M > 82(2d+l)e2(2d-1)72d(2d-1)4k 2d+1, 

then there are exactly k measures of maximal entropy. 

Proof: By Corollary 2.4 above, there are at least k ergodic measures of maximal 

entropy. By Theorem 2.3 above, it suffices to show that if g E {1 , . . . ,  k}, and 

# and v are two ergodic measures of maximal entropy such that  for each of 
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them, there is a.s. an infinite g-cluster whose complement contains no infinite 

component, then tt = ~. 

In view of Lemma 2.9 above, it suffices to show that 

# x v (E)  = 0 

where E is the event that there exists an infinite path ~r: 0 ~ ¢¢ such that for 

all x • ¢r, at least one of 7/(x) and 5(x) is not in C~. However, this result is part 

of the content of Theorem 2.11. | 

The rest of this section is devoted to the proof of Theorem 2.11. 

Definition 2.13: Let G be enclosing. Define the event Eo C X x X to be 

{(~/,5)1 U {7/(x),/f(x)} f3 B = q} and for all x • OG~,~I(x) or/i(x)  is in B}. 
xEOG 

We also let 

E$ = {~/(0),E B} U {~f(0) E B} and 

F = E o u U Ea.  
G: G is enclosing 

It is easy to see that F c implies the existence of an infinite (gl, ~2)--double--cluster 

for some gl and g2- 

We can show that /.t x v(E)  > 0 where E is the event that  there exists an 

infinite (gl, ~2)--double--cluster for some £1 and t2. Unfortunately, we would not 

necessarily be able to conclude that  E has probability I since we don't  know that  

tt x v is ergodic even though both/~ and v are. We therefore need to consider the 

ergodic decomposion of/~ x v. Since # and v are ergodic, almost all elements that 

arise in the ergodic decomposition have # and t, as their respective marginals. 

LEMMA 2.14: Let m be an ergodic measure on X x X which has/.t and v as its 

two marginals where d, M ,  # and v are as in Theorem 2.11. Then re(E) = 1 

where E is the event that there exists an infinite (g, e)-double-cluster. 

Proof." It suffices to show that  there is an infinite (~1, e2)-double-cluster for some 

gl and ~2 with probability i since by Theorem 2.3 there clearly exists an (~1, i2)-  

double-cluster for (gs, ~2) # (g, g) with m-probabili ty 0. By ergodicity, it suffices 

to show that  there is positive probability of having an infinite (~1, £2)-double- 

cluster for some ~1 and g2. Since it is obvious that  F c implies the existence of an 
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infinite (ex, e2)-double-cluster containing the origin for s o m e  e I and t2, we need 

only show that m(F) < 1. 

It follows by definition that if EG occurs (G being an enclosing set), then for 

all x E OG c, at least one of ~(x), ~f(x) is in B. Hence one of 7/and 6 has at least 

IOGC[/2 points of OG ~ where the value is in B. Since there are at most 2 I°a°l 

such subsets, Lemma 2.6 easily gives us that 

laacl 

(Note that the values for rl and 6 need not be independent.) 

Using the easy bound IOG~I > ~ together with the fact that M > 4k 2d+l, - -  2 d - 1  

one obtains 
/ t ~ \ lOG[ 
( 2 2-a-q--~ k 2(~d-~) ) m(Eo) < 2 \ 

_ k2d+l  
Since E~ clearly has measure at most 2--D-- by Lemma 2.6, Lemma 2.8 and 

the above give us 

m(F) <_ m(E,)  + Z m(Ea) 
G: G is enclosing 

£ 

k 2d+l £ + 2 d  4 [e7 22--z~-~k 2(2~-z~-~ 

2d-  
Next, a simple computation gives 

Z ~ + 2 d - 4  
7 d - 7  (1/2) = 1. 

An easy calculation then shows that if M > 82(2d+1)e2(2d-t)72d(2a-t)4k2d+l, then 

m(F) < 1, as desired. | 

PROPOSITION 2.15: Let d, M, p and u be as in Theorem 2.11. Then l~ × u( E ) = 1 

where E is the event that there exists an int~nite (~, e)-double--cluster. 

Proof: Consider the ergodic decomposition of # x u. The ergodicity of # and 

v imply that almost every element in the ergodic decomposition of # x v has 

marginals # and v respectively. By Lemma 2.14, almost every element of the 

ergodic decomposition therefore gives E probability 1 and therefore # × v must 

also. | 
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LEMMA 2.16: I f  

M > 2ek(7k2) d, 

then given any two measures # and u of maximal entropy, the # × v-probability 

of having an infinite **-path  7r such that  for all x E 7r, at  least one of r/(z) and 

6(x) is in B is O. 

Proof'. It  suffices to show that  there is no such pa th  containing the origin 0 a.s. 

Given a fixed **-pa th  ~/of length n, the probability that  for all x E % at least 

one of y(x) and 6 (x ) i s  in B is by Lemma 2.6 at most 2 '~+1 - - ( - ~ ) n + l  since ~/ 

must be in B on some subset of the path, 6 must be in B on the complement of 

this subset, and there are at most 2 n+l subsets. 

As the number of **-paths  of length n is at most (7d) n, the probabili ty that  

there exists a **-pa th  of length n start ing at 0 of the above form is at most 

(7d2k2d+l/M) n+l which ~ 0 as n ~ oc as M > 2ek(7k2) d. I 

The next lemma is proven in [3]. 

LEMMA 2.17: Let G be an enclosing set. Then OG is **-connected. 

Proof  of Theorem 2.11: By Proposition 2.15, there is some infinite (e, g)-double- 

cluster C a.s.. We want to show that  Z d n C c has all finite components a.s.. 

In view of Proposition 2.16, we need to prove the deterministic fact that  if 

(T/, 6) E X × X is such tha t  there is an infinite (g, ~)-double-cluster C and some 

component of Z d f~ C c is infinite, then there is an infinite **-path 7r such tha t  for 

all x E 7r, at least one of ~/(x) and 6(x) is in B. By compactness, it suffices to 

show that  there is some point from which there begins a **-path of any length k 

such that  at least one of ~?(x) and 6(x) is in B for all points on this path. 

We therefore let I be an infinite component of C ~. Clearly there must be some 

point in I which is adjacent to some point in C which we assume without loss of 

generality is 0. Note that  each point of OI must necessarily have either ~/(x) or 

6(x) in B. Let I p be the connected component of I N As which contains 0. It  is 

clear that  I ~ has a connected complement and hence I ~ is an enclosing set. 

By Lemma 2.17, OI t is **-connected. Clearly 0 and any point of I ~ N 0A~ 

(which clearly is nonempty as I is infinite) is in OI ~. Hence there is a **-pa th  

C_ 0 I  ~ from 0 to some point on 0A~. Note next that  if x E a I  t M A,~-I, then at 

least one of ~/(x) and 6(x) is in B since OI ~ N A~-I  C 0I. (Note that  this need 
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not be true for those x in 0I' n 0A~.) As n is arbitrary, we obtain **-paths of 

the desired type starting from 0 of any given length k. | 

3. A subsh i f t  w i t h  a c o n t i n u u m  of  e rgod ic  m e a s u r e s  o f  m a x i m a l  

e n t r o p y  in d > 3 d imens ions  

In this section, we prove Theorem 1.7. We carry out the argument only for d = 3, 

the generalization to higher dimensions being obvious. However, we do not know 

how to make such a construction for d = 2. 

Let M be a positive integer, F = { - M , . . . , - 2 , - 1 , 1 , 2 , . . . , M }  and d = 3. 

Our subshift of finite type is defined by requiring that  for all integers x, y, x', y' 

and z with Ix - x' I + Jy - Y'I = 1, 

~(x, ~, z)~(x', y', z) > -1.  

It is easy to see that  on each horizontal plane 

Pz = {(x ,~ ,z) :  (x,y)  e z2} ,  

the rules of the subshift are those of Example 1.8 while there are no restrictions 

in the vertical direction; i.e., 

,l(x, y, z),7(x, y, z + 1) 

is allowed to be anything. While this example is nearest neighbor and symmetric 

in a certain sense, one should note that it is not a symmetric nearest neighbor 

system in the sense of Definition 1.2. In particular, it is not isotropic. We let 

Y denote this subshift of finite type and X denote the subshift of finite type of 

Example 1.8 with d = 2. Note that  Y = X z. 

Let M > 4e28 ~ and let #+ and # -  denote the two distinct ergodic measures 

of maximal entropy for X (see Theorem 1.12). Let up be product measure on 

{ _  +}z  with density p; 

up= II(PS+ + ( 1 -  p)5_). 
iEZ 

Given ~? E { - ,  +}z ,  let #n be the measure on Y given by 

H #~(0. 
iEZ 
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In words, under #7, all different horizontal planes are independent with the ith 

plane being given the measure #+ or # -  depending on ~(i). Finally, let 

~p = / ~7 dvp(~)" 

In words, picking a random configuration according to #p is done by picking a 

configuration 7/6 { - ,  +}z  according to Vp and then picking a configuration from 

Y according to #7" The following result gives us Theorem 1.7. 

THEOREM 3.1: H M  > 4e28 d, then each #v [or p 6 [0, 1] is an ergodic measure 

of maximal entropy and the pp's are distinct. 

Proof': The fact that each #v is Z3-invariant is obvious. Letting a = #+(~(0, 0) 

_> 1), we have #p(r](O, 0, 0) > 1) = pa + (1 - p)(1 - a) = p(2a - 1) + (1 - a). Since 

#+ # # - ,  a > 1/2 which gives 2a - 1 > 0 and we see that the pp'S are distinct. 

(Actually to conclude that a > 1/2 from the fact that #+ # p - ,  one also needs 

the fact that p -  -~ #+ in the sense of the partial order discussed in [3] which is 

also given in the next section.) 

It is clear that each #p is Bernoulli (in fact, independent) under the Z-action 

given by vertical translation and hence each #p is ergodic under the full za-action. 

We finally show that they all have maximal entropy. Letting an denote the 

number of compatible configurations for X in [ -n ,  n] 2, the number of compatible 

ln(a2~+l) H ( X ) ,  see that configurations for Y in [ -n ,  n] 3 is a2~ +1. Since ~ ~ we 

H ( Y )  = H ( X ) .  We now show that for each p, H(#p) = H ( X ) ,  demonstrating 

maximal entropy for the #p's. 

For any measure m on Y, not necessarily translation invariant, let Hn(m) 

denote the entropy in the box [ -n ,  n] 3 for m. Note that for each ~, H,~(#7) = 

(2n + 1)H,~(+) where H,~(+) denotes the entropy in [ -n ,  n] 2 for #+. 

Using the usual concavity property of entropy, we obtain 

Hn(l~p) >_ / Hn(#7)dvp(~) = (2n + 1)Hn(+). 
J{ _,+}z 

Dividing by (2n + 1) 3, letting n ---* 0c and using the fact that p+ has maximal 

entropy for X, we obtain H(pv)  = H ( X ) ,  as desired. | 

We mention that while we obtained a strongly irreducible subshift of finite 

type with a continuum of ergodic measures of maximal entropy, the example is 

slightly unsatisfying for the following reason. It is easy to check that for p # 0, 1, 
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#p is not ergodic under the Z2-action of translations in the x and y directions. It  

would be more satisfying to obtain an example where there was a continuum of 

measures all of which were K or mixing or at least totally ergodic (i.e., ergodic 

under all nonzero subgroups). 

4. U n i q u e n e s s  in t h e  n o n s y m m e t r i c  case  

In this section, we consider only Example 1.13 and prove Theorems 1.14 and 

1.15. 

In the proof of Theorem 1.14, we only consider the case k = 1, the other 

cases being proved in the same way. We first need two results. The first result 

is analogous to Lemma 2.6 (in the case k = 2) and can be proved in the same 

way, the only formal difference in the statement being that  the subshift of finite 

type X is now different since - M  is no longer a possibility. Lemma 4.2 follows 

easily (by taking a trivial upper bound on the number of **-paths  of length n 

start ing from the origin) from Lemma 4.1. We therefore skip the proof of these 

two lemmas. 

LEMMA 4.1: With M and d fixed, let # be a measure of maximal entropy on X .  

Let G C_ Z d. Let E be the event 

LEMMA 4.2: I[ 

{T/(z) = +1 for all x E G}. 

M >  4e(28) d, 

then given any measure # of maximal entropy, the probability of having an infinite 

**-path of + l 's is O. 

We need the following definitions which are essentially taken from [3] and are 

completely analogous to the definitions given in §2. 

Definition 4.3: If a E X,  we call a pa th  ~r spec ia l  (relative to a )  if there are no 

two points in a row on ~r where a has absolute value 1. | 

I t  is easy to see that  the existence of a special pa th  between two points in Z d 

defines an equivalence relation on Z d (which depends on the configuration a).  



294 R. BURTON AND J. E. STEIF Isr. J. Math. 

Definition 4.4: An a t o m  is an equivalence class with respect to the above equiv- 

alence relation. 

PROPOSITION 4.5: I f d  >_ 2 and 

M > 4e28 d, 

then given any ergodic measure of maximal entropy in d-dimensions, either there 

is almost surely exactly one infinite positive atom whose complement contains no 

infinite connected subset or there is almost surely exactly one infinite negative 

atom whose complement contains no infinite connected subset. 

Proo~ The exact same argument used to prove Theorem 2.3 can be used here. 

One simply uses Lemmas 4.1 and 4.2 above in the appropriate places. Note that  

this result differs from the case k = 2 in two ways, namely that "cluster" has 

been replaced by "atom" and that { - M , . . . , - 1 ,  1 , . . . ,  M} has been replaced 

by { - M  + 1 , . . . ,  -1 ,  1 , . . . ,  M}. The latter difference causes no problem at all 

and for the first difference, one simply observes that F c (defined in the proof of 

Theorem 2.3) also implies the existence of an infinite atom containing the origin. 
| 

Proof of Theorem 1.14: One first notes that Proposition 4.5 immediately im- 

plies that there exists an ergodic measure # of maximal entropy such that there 

is almost surely exactly one infinite positive atom whose complement contains no 

infinite connected subset. To see this, note that if there were not such a measure, 

then, by Proposition 4.5, there would be an ergodic measure of maximal entropy 

v such that there is almost surely exactly one infinite negative atom whose com- 

plement contains no infinite connected subset. One could then obtain a measure 

with one positive atom whose complement contains no infinite connected subset 

simply by transforming v by flipping the infinite negative atom. As explained in 

§2, the atoms of a configuration are unchanged when we flip some of the negative 

atoms and therefore this mapping would be invertible which implies that  the 

transformed measure also has maximal entropy (and is of course also ergodic). 

Next, the proof of Theorem 1.17 in [3] (Theorem 1.12 in the present paper), 

also shows here that there is only one ergodic measure of maximal entropy with 

the property that there is almost surely exactly one infinite positive atom whose 

complement contains no infinite connected subset. Let p denote this ergodic 
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measure of maximal  entropy. We give an alternative description of It which will 

be useful for us. To do this, we first let It + be the measure on X which gives 

probability 1 of having an M at all points of A~ U 0An and gives uniform measure 

on all compatible configurations on A,~ which equal M on 0An. It  is shown in 

[3] that  It + converges as n ~ oc and moreover the discussion there shows that  

this limit is It above. (See the proof of Theorem 1.15 below for more details 

concerning this point.) 

From the above discussion, in order to show that  there is a unique measure of 

maximal entropy, it suffices to show that  there is no ergodic measure of maximal 

entropy v such that  there is almost surely exactly one infinite negative a tom 

whose complement contains no infinite connected subset. If  such a v existed, we 

then can let P be the measure obtained from v by flipping the infinite negative 

a tom and the above discussion would imply that  P = It. We now obtain a 

contradiction by finding an event which has positive It-measure and 0 P-measure. 

Consider the event E that  the origin belongs to an infinite positive a tom and 

the value of the configuration at the origin is M. It  easily follows from the 

construction of P and the fact that  - M  is not an element of the alphabet that  

this event has P-measure 0. 

We now show It(E) > 0. Let E1 be the event that  the origin is in an infinite 

positive a tom and let F be the event that  the configuration at the origin has 

value M. Clearly both of these events have positive It-measure and so we need 

to show that  they are positively correlated. Now let E~ be the event that  there 

is a pa th  of length n start ing from the origin on which the configuration is 

positive and such that  no two successive points take value 1. Since the set of 

compatible configurations on Am which take the value M on 0Am is what is 

called a distributive lattice, it follows from the FKG inequality (see [4]) that  if 

m > n It+(E'~ N F) >_ It+(E'~)it+(F). Letting m --~ co and then n --~ c~ (and 

noting that  [~n~__l E~ = El)  gives us If(El n F) >_ It(El)it(F) which is > 0. | 

Before proving Theorem 1.15, we first give the following lemma (which is anal- 

ogous to Lemmas 2.6 and 4.1) whose proof we give afterwards. 

LEMMA 4.6: Let It be a measure of maximal entropy for X with some k E 

{1 , . . . ,  M - 1}. Then for any a with M a  an integer and for any finite subset 

GC_Z d, 

It(]~(X)[ _< a M  Vx e G) <_ (22d+la) IGI. 
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Proo f  o f  Theorem 1.15: Let a -- ~ and # be any measure of maximal entropy. 

We first want to show that the set {x: Ir/(x)l _< M - k} does not percolate which 

means that with probability 1 this random set contains no infinite connected 

subset. Since the number of paths of length n is at most 2 d ( 2 d -  1) n - l ,  Lemma 

4.6 implies that the probability that there is a path of length n starting from the 

origin on which I~(x)l <_ a M  (or I~(x)l < M - k by definition of a) is at most 

2 d ( 2 d -  1)'~-l(22d+la) n+l. 

1 Since M_~ < (2d--1)22d+1, this probability goes to 0 as n ~ co. Therefore the set 

{x: ]~/(x)] _< M - k} does not percolate, as desired. 

Finally, as k _< M - 1 and - M  + k is the smallest state, one can proceed 

by imitating the proof of Theorem 1.17 in [3] to demonstrate uniqueness. We 

therefore only sketch this argument refering the reader to the above proof for 

more complete details. 

If u and ~ are probability measures on F s where S is countable (perhaps 

finite), we say u _ ~ if there exists a probability measure m on F s x F s whose 

first and second marginals are u and ~ respectively and such that 

m{(~,~): ~(x) < ~(x) Vx e S} = 1. 

Let #+ = lim,~--.oo #+ where #+ is defined earlier in this section. Then one can 

easily show that # --</~+. (This follows from the fact (see Lemma 2.3 in [3]) that  

if r /and  6 are configurations defined on OA~ with T/(x) _< ~f(x) Vx, then #n and 

#~ (as defined in Definition 2.5) satisfy #n --- #~.) 

To show #+ _ #, it suffices to show that this holds when the measures are 

restricted to a fixed An. Since under #, the set {x: Ir/(x)l < M - k} does 

not percolate, there is a type of surface contour surrounding An on which the 

configuration is at least M - k + 1. Inside this contour, the configuration is 

uniform over all configurations with these boundary values or equivalently with 

boundary values M and we obtain #+ _-< # on A,~ and therefore uniqueness. | 

Proo f  o f  L e m m a  4.6: Let fi be obtained from # by flipping all the infinite 

negative atoms. As we have seen, fi has maximal entropy. It is also clear that  

fi(Irl(x)l <_ a M  Vx 6 G) = #(]r/(x)[ <_ a M  Vx e G). 

Let E denote the event in question and let fl = f i (E).  We want to show 

13 _< (22d+loL) IGI. If /3 = 0, there is nothing to prove and so we assume fl > 0 
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and let e < ~. We next take An containing G u OG c with n so large that  with 

probability greater than 1 - e, any (necessarily finite) negative flippable atom 

intersecting either G or OG ~ is contained in An-1. Letting F be this event, we 

have tha t /~(F)  > 1 - e and so ~(E n F)  > ~ - e. There is then a configuration 

with location set 0An such that  /5(y) > 0 and ~( Ir~ on 0An) gives E n F 

probability > ~ -  e. Proposition 1.20 tells us that this conditional measure 

restricted to A,~ is uniform distribution #7 on a n (see Definition 2.5). Note that 

the events E and F are measurable with respect to the configuration on A,~ and 

so we can think of them as subsets of a n. 

Next, for each configuration ~ E a n n E n F,  let ~ be the configuration obtained 

from ~ by reversing the sign of any negative flippable atom which meets G U OG ~ 

(which necessarily is contained in An- l )  and setting ~ = 1 on G. Note that 

• a n n E N F and ~(x) = 1 for each x •  G. Since 

I G U OGCl <_ (2d + 1)lal, 

the set {( '  • a n n E n F I ~' = ~} has cardinality at most 2 (2d+l)lal ( aM)  lal. This 

is because from ~, one can recover ~ up to the sign of the atoms touching G U OG ~ 

and the c~M possible values on G. 

Given ~ • a n N E n F,  define the class C(~) to be 

{Pl P is a configuration on An 

with p(x) = ~(x) for x ff G and p(x) > 0 for x • a t .  

Clearly C(~) c_ aT n F, IC(~)I -- MIGI and C(~) n C(~') = ~ for ~ # ~' since if 
¢ ~', they must differ at some point not in G as they are - 1 on G. 

We therefore obtain 

Z _  e < ~ u n ( E n F ) _  la'7 n E n FI 
lanl 

< I{~1,' • an n E n F}12(~d+l)lvl(aM)l GI = (22d+~a)lVl. 
- -  I{~1~" • a,7 n E n F}IMIGI 

As e is arbitrary, we obtain the desired inequality. I 

5. Uniqueness  via state  spl i t t ing 

In this section, we prove Theorems 1.17 and 1.18. We first mention that  the fact 

that X n has a unique measure of maximal entropy for large n also follows from 



298 R. B U R T O N  AND J. E. S T EIF  Isr. J. Math .  

the Dobrushin uniqueness condition (Theorem 8.7 in [5]) but our method will be 

more direct. 

P r o o f  o[  T h e o r e m  1.17: It is obvious that each X "  for n > 1 is strongly irre- 

ducible. 

Let G denote the set of n new states which we are adding. Let it be any 

measure of maximal entropy for X n. Since any element of G can sit next to any 

other element, Proposition 1.20 tells us that for each x E Z d, 

n 
it( (x) e Cl$'.) > 

where ~-~ denotes the a-field generated by {~/(Y)}x#~ez~. Equivalently, 

k 
it(V(x) ~ O l ~  ) _< h - - ~ a . s .  

It follows that if {~/(x)} has distribution it, then {x • zd: ~/(x) ~ G} is dominated 

by an i.i.d, process with density k in the following sense. If {6(x): x • Z d} 

is an independent process with P ( 5 ( x )  = 1) = k and P ( 5 ( x )  = O) - n 

for all x, then {~/(x): x • Z d} and {6(x): x • Z d} can be defined on the same 

probability space so that 

{x • zd: ¢ a }  c {x • 6(x) = 1} 

with probability 1. 

Now let u denote the probability measure on {0, 1} zd corresponding to the 

process {5(x): x C zd}. Let it and /~ be two measures of maximal entropy for 

X n. Finally let E C_ X"  x X n be the set of pairs of configurations (~/, r#) such 

there exists an infinite path ~ in Z d such that  for all x E 7r, at least one of ~/(x) 

and ~f(x) is not in G. 

If we can show that  it x /5(E)  = 0, it will follow from Lemma 2.9 that  it =/5,  

proving uniqueness of the measure of maximal entropy. Using the containment 

above, we obtain 

it x /5 (E)  < u x u(F)  

where F C_ {0, 1} z~ x {0, 1} z~ is the set of pairs of configurations (6, 6') such 

there exists an infinite path r in Z d such that for all x E 7r, at least one of 5(x) 

and 6'(x) is 1. 
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For each x E Z 4, the probability that  at least one of 6(x) and 6'(x) is 1 is 
2k k 2 ,~+k (~--~) . Since for different x these are independent and ~2k _ (~__~)k 2 < 

pc(d), it follows that  u × v(F)  = 0, as desired. | 

P r o o f  o f  Theorem 1.18: Let X denote the subshift with states 1 and -1 where 

1 and -1 are not allowed next to each other. This of course implies IXI = 2 

where the only configurations are all l ' s  or all - l ' s .  Using the nontrivial fact 

that  pc(2) _> 1/2 (see [8] and [7]), Theorem 1.17 immediately implies that  the 

"iceberg" model with M = 1 in 2 dimensions has a unique measure of maximal  

entropy.* 

Also, the methods of [3] can also be applied to this system to show that  for 

large M it has more than one measure of maximal entropy. The details are left 

to the reader. | 

The reader should notice tha t  by Theorem 1.17 if we take the "iceberg" model 

in any dimension with arbitrary M, then we can still obtain a unique measure of 

maximal  entropy provided we increase the number of zeroes sufficiently. 
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